

Exceptional service in the national interest

Dakota Software Training

Model Calibration

http://dakota.sandia.gov

Module Learning Goals

In this module you will learn

- Why you might want to tune models to match data via calibration (parameter estimation)
- How to formulate calibration problems and present them to Dakota
- What Dakota methods can help you achieve calibration goals

Exercise: create a Dakota calibration study and try to infer unknown parameters for a synthetic data set.

Calibration: Fitting Models to Data

- Use data to improve characterization of input parameter values, by maximizing agreement between simulation output and experiment target
 - Infer unknown conditions, source terms, or properties
 - Tune models to match specific scenarios
 - Make them more robust to predict a range of outcomes

- Also known as parameter estimation/identification, inverse modeling
- Can also calibrate one model to another (typically higher fidelity) model
- Calibration is not validation! Separate hold-out data must be used to assess whether a calibrated model is valid.

Classes of Model Calibration

- Goal: maximize agreement between observations y_i and corresponding simulation output $s_i(\theta)$; typically a nonlinear, implicit function of θ (parameterized simulation)
- Deterministic calibration: seek one or more sets of parameter values that best match the data y, typically in the two-norm:

$$\min_{\theta} f(\theta) = SSE(\mathbf{\theta}) = \sum_{i=1}^{n} [(s_i(\mathbf{\theta}) - y_i)^2] = \sum_{i=1}^{n} [r_i(\mathbf{\theta})]^2$$

- Least-squares: initial iterate θ_0 , nonlinear optimization, updated values θ
- Statistical calibration: seek a statistical characterization of parameters most consistent with the data

 Bayesian: prior distribution, statistical inference (MCMC), posterior distribution

Example: Parameter Estimation for a Material Plasticity Model

f – yields rate dependence (fit)

Y – the yield stress (chosen)

n – exponent in flow rule (fit)

H – hardening in evolution of κ (fit)

 R_d – recovery in evolution of κ (fit)

 $f = 4.52 \times 10^4$

Y 1325 MPa

n 0.386

 $H = 1.10 \times 10^5 MPa$

 R_{d} 389

NOTE: Experimental data taken from a representative test, ph13-8-h950-test-3

Flow rule concentrating the effective stress

$$\dot{\epsilon_p} = f\{\sinh\left[\frac{\bar{\sigma}}{(1-\phi)(\kappa+Y)} - 1\right]\}^n$$

evolution of isotropic hardening

$$\dot{\kappa} = [H - R_d \kappa] \dot{\epsilon_p}$$

*Large values of f make the formulation rate independent. I did not need to fit f.

Specifying Calibration Parameters

- Deterministic calibration problems are presented to Dakota using design variables (same as optimization)
- Initial point starts the solve for local methods
- Bounds for the search are typical, but not required for all methods
- See advanced slides for Bayesian methods, which use uncertain variables instead of design

Cantilever calibration variable example

```
variables
```

```
# calibration parameters
continuous_design 3
  upper_bounds 3.1e7 10 10
  initial_point 2.9e7 4 4
  lower_bounds 2.7e7 1 1
  descriptors 'E' 'w' 't'
```

```
# Fixed config parameters
continuous_state 3
  initial_state 40000 500 1000
  descriptors 'R' 'X' 'Y'
```

Defining Calibration Responses

$$\min_{\theta} f(\theta) = SSE(\mathbf{\theta}) = \sum_{i=1}^{n} [(s_i(\mathbf{\theta}) - y_i)]^2 = \sum_{i=1}^{n} [r_i(\mathbf{\theta})]^2$$

Three main options:

1. Interface returns differences (residuals) $r_i(\theta) = s_i(\theta) - y_i$ to Dakota

2. Interface returns simulation outputs $s_i(\theta)$ to Dakota; specify data file containing y_i values

3. Interface returns composite objective $f(\theta)$; gives advanced users greater control

```
responses
  calibration_terms = 2
  descriptors
   'stress_diff' 'displ_diff'
```

```
responses
  calibration_terms = 2
  descriptors
    'sim_stress' 'sim_displ'
  calibration_data_file 'myobs.dat'
    num_experiments = 3
```

```
responses
  objective_functions = 1
  descriptors 'f_SSE'
```

Local nonlinear least squares methods require set of residuals (Option 1 or 2)

Dakota Calibration Methods

Deterministic

- For local parameter value improvement; reliable simulation derivatives: specialized local least-squares solvers
- Local search with unreliable derivatives: pattern search
- Global best parameter set: global optimizers such as DiRECT or genetic algorithms (can be costly)
- Other advanced optimization approaches

Statistical

- Calibrate distribution parameters to match data: any of the above solvers with a nested model
- Bayesian inference: Markov Chain Monte Carlo (QUESO)

Classes of Methods

Gradient Descent

- Looks for improvement based on derivative
- Requires analytic or numerical derivatives
- Efficient/scalable for smooth problems
- Converges to local extreme

Derivative-Free Local

- Sampling with bias/rules toward improvement
- Requires only function values
- Good for noisy, unreliable or expensive derivatives
- Converges to local extreme

Derivative-Free Global

- Broad exploration with selective exploitation
- Requires only function values
- Typically computationally intensive
- Converges to global extreme

More About Local Calibration

- Local, derivative-based least squares solvers are similar to Newton methods for general nonlinear programming
- They can take advantage of the squared residual formulation

$$\frac{SSE}{2} = f(\theta) = \frac{1}{2} r(\theta)^T r(\theta) = \frac{1}{2} [s(\theta) - y]^T [s(\theta) - y]$$

$$\nabla f(\theta) = J(\theta)^T r(\theta); \quad J_{ij} = \frac{\partial r_i}{\partial \theta_j} \quad \nabla^2 f(\theta) = J^T J \left(+ \sum_{i=1}^n r_i(\theta) \nabla^2 r_i(\theta) \right)$$

and either ignore the circled Hessian term (as residuals should be small as the algorithm converges), or successively approximate it during optimization

- Dakota's NL2SOL local calibration algorithm uses a quasi-Newton update scheme to approximate the Hessian, and is often more robust than other solvers when the residuals are not small.
- These methods can be very efficient, converging in a few function evaluations

Exercise: Find Beam Properties

- The directory ~/exercises/calibration contains data files with observations of mass, displacement, and stress from beam experiments
- As experiments were conducted, the observation error was reduced by improving the measurement equipment. File extensions .1--.5 correspond to 0.5, 0.1, 0.05, 0.01, and 0.0 relative error.
- Complete the Dakota input file dakota_calibration_sketch.in to use NL2SOL to determine the properties (Young's modulus E, width w, and thickness t) of the beam used in the experiment. Hold R, X, Y fixed.

Hints:

- Previous example input files can help with the variables blocks
- See the reference manual sections on:
 - Variables: continuous design, continuous state
 - Responses: calibration_terms (the simulator returns the predicted QOIs),
 calibration data file and its format, gradient types
 - Scaling (method, variables, responses)

Exercise: Find Beam Properties

- How do your estimated parameter values compare to your neighbors?
- Is it sensitive to the initial point?
- Do your parameter estimates converge as the noise level in the data is reduced (data files .1 through .5)?
- What do you observe in the final residuals, SSE, and confidence intervals?
- What happens if you use a pattern search or DiRECT method?

Parameter Identifiability

- Looking at the cantilever beam equations, which parameters would you expect to be able to estimate given data on which responses?
- How would you determine this for an implicit function (black-box simulation)?

$$M = \rho * wt * \frac{L}{12^3}$$

$$S = \frac{600}{wt^2}Y + \frac{600}{w^2t}X$$

$$D = \frac{4L^3}{Ewt} \sqrt{\left(\frac{Y}{t^2}\right)^2 + \left(\frac{X}{w^2}\right)^2}$$

Guide to Calibration Methods

Category	Dakota method names	Continuous Variables	Categorical/ Discrete Variables	Bound Constraints	General Constraints
Gradient-Based Local (Smooth Response)	nl2sol	x		X	
	nlssol_sqp, optpp_g_newton	x		X	X
Gradient-Based Global (Smooth Response)	hybrid strategy, multi_start strategy	x		x	x
Derivative-Free Global (Nonsmooth Response)	efficient_global, surrogate_based_global	x		x	x

See Usage Guidelines in Dakota User's Manual.

Also, can apply any optimizer when doing derivativefree local or global calibration.

Calibration References

- G. A. F. Seber and C. J. Wilde, "Nonlinear Regression", John Wiley and Sons, Inc., Hoboken, New Jersey, 2003.
- M. C. Hill and C. R. Tiedeman, "Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty", John Wiley and Sons, Inc., Hoboken, New Jersey, 2007.
- R. C. Aster, B. Borchers, and C. H. Thurber, "Parameter Estimation and Inverse Problems", Elsevier, Inc., Oxford, UK, 2005.
- Dakota User's Manual
 - Nonlinear Least Squares Capabilities
 - Surrogate-Based Minimization
- Dakota Reference Manual

Guide to Optimization Methods

Category	Dakota method names	Continuous Variables	Categorical/ Discrete Variables	Bound Constraints	General Constraints
Gradient-Based Local (Smooth Response)	optpp_cg	X			
	dot_bfgs, dot_frcg, conmin_frcg	x		X	
	<pre>npsol_sqp, nlpql_sqp, dot_mmfd, dot_slp, dot_sqp, conmin_mfd, optpp_newton, optpp_q_newton, optpp_fd_newton, weighted sums (multiobjective), pareto_set strategy (multiobjective)</pre>	x		x	x
Gradient-Based Global (Smooth Response)	hybrid strategy, multi_start strategy	x		x	x
Derivative-Free Local (Nonsmooth Response)	optpp_pds	X		X	
	<pre>asynch_pattern_search, coliny_cobyla, coliny_pattern_search, coliny_solis_wets, surrogate_based_local</pre>	x		x	x
Derivative-Free Global (Nonsmooth Response)	ncsu_direct	X		X	
	<pre>coliny_direct, efficient_global, surrogate_based_global</pre>	x		x	x
	coliny_ea, soga, moga (multiobjective)	X	x	X	x

Optimization References

- J. Nocedal and S. J. Wright, "Numerical Optimization", Second Edition,
 Springer Science and Business Media, LLC, New York, New York, 2006.
- S. S. Rao, "Engineering Optimization: Theory and Practice", Fourth Edition, John Wiley and Sons, Inc., Hoboken, New Jersey, 2009.
- Dakota User's Manual
 - Optimization Capabilities
 - Surrogate-Based Minimization
 - Advanced Strategies
 - Advanced Model Recursions: Optimization Under Uncertainty
- Dakota Reference Manual

APPLICATION-SPECIFIC EXAMPLE